Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.

Identifieur interne : 000B35 ( Main/Exploration ); précédent : 000B34; suivant : 000B36

Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.

Auteurs : Y F Dufrêne [Belgique] ; C J Boonaert ; P A Gerin ; M. Asther ; P G Rouxhet

Source :

RBID : pubmed:10464206

Descripteurs français

English descriptors

Abstract

Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.

DOI: 10.1128/JB.181.17.5350-5354.1999
PubMed: 10464206
PubMed Central: PMC94041


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Dufrene, Y F" sort="Dufrene, Y F" uniqKey="Dufrene Y" first="Y F" last="Dufrêne">Y F Dufrêne</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité de Chimie des Interfaces, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. dufrene@cifa.ucl.ac.be</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Unité de Chimie des Interfaces, Université Catholique de Louvain, 1348 Louvain-la-Neuve</wicri:regionArea>
<orgName type="university">Université catholique de Louvain</orgName>
<placeName>
<settlement type="city">Louvain-la-Neuve</settlement>
<region type="region" nuts="1">Région wallonne</region>
<region type="province" nuts="1">Province du Brabant wallon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boonaert, C J" sort="Boonaert, C J" uniqKey="Boonaert C" first="C J" last="Boonaert">C J Boonaert</name>
</author>
<author>
<name sortKey="Gerin, P A" sort="Gerin, P A" uniqKey="Gerin P" first="P A" last="Gerin">P A Gerin</name>
</author>
<author>
<name sortKey="Asther, M" sort="Asther, M" uniqKey="Asther M" first="M" last="Asther">M. Asther</name>
</author>
<author>
<name sortKey="Rouxhet, P G" sort="Rouxhet, P G" uniqKey="Rouxhet P" first="P G" last="Rouxhet">P G Rouxhet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10464206</idno>
<idno type="pmid">10464206</idno>
<idno type="pmc">PMC94041</idno>
<idno type="doi">10.1128/JB.181.17.5350-5354.1999</idno>
<idno type="wicri:Area/Main/Corpus">000B32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B32</idno>
<idno type="wicri:Area/Main/Curation">000B32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B32</idno>
<idno type="wicri:Area/Main/Exploration">000B32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Dufrene, Y F" sort="Dufrene, Y F" uniqKey="Dufrene Y" first="Y F" last="Dufrêne">Y F Dufrêne</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité de Chimie des Interfaces, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. dufrene@cifa.ucl.ac.be</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Unité de Chimie des Interfaces, Université Catholique de Louvain, 1348 Louvain-la-Neuve</wicri:regionArea>
<orgName type="university">Université catholique de Louvain</orgName>
<placeName>
<settlement type="city">Louvain-la-Neuve</settlement>
<region type="region" nuts="1">Région wallonne</region>
<region type="province" nuts="1">Province du Brabant wallon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boonaert, C J" sort="Boonaert, C J" uniqKey="Boonaert C" first="C J" last="Boonaert">C J Boonaert</name>
</author>
<author>
<name sortKey="Gerin, P A" sort="Gerin, P A" uniqKey="Gerin P" first="P A" last="Gerin">P A Gerin</name>
</author>
<author>
<name sortKey="Asther, M" sort="Asther, M" uniqKey="Asther M" first="M" last="Asther">M. Asther</name>
</author>
<author>
<name sortKey="Rouxhet, P G" sort="Rouxhet, P G" uniqKey="Rouxhet P" first="P G" last="Rouxhet">P G Rouxhet</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="ISSN">0021-9193</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Microscopy, Atomic Force (MeSH)</term>
<term>Phanerochaete (growth & development)</term>
<term>Phanerochaete (ultrastructure)</term>
<term>Spores, Fungal (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Microscopie à force atomique (MeSH)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (ultrastructure)</term>
<term>Spores fongiques (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Phanerochaete</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Atomic Force</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Microscopie à force atomique</term>
<term>Phanerochaete</term>
<term>Spores fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10464206</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9193</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>181</Volume>
<Issue>17</Issue>
<PubDate>
<Year>1999</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>5350-4</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dufrêne</LastName>
<ForeName>Y F</ForeName>
<Initials>YF</Initials>
<AffiliationInfo>
<Affiliation>Unité de Chimie des Interfaces, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. dufrene@cifa.ucl.ac.be</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boonaert</LastName>
<ForeName>C J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gerin</LastName>
<ForeName>P A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Asther</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouxhet</LastName>
<ForeName>P G</ForeName>
<Initials>PG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>8</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10464206</ArticleId>
<ArticleId IdType="pmc">PMC94041</ArticleId>
<ArticleId IdType="doi">10.1128/JB.181.17.5350-5354.1999</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protoplasma. 1967;64(1):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4866054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 2;394(6688):52-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9665127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 May;68(5):1678-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7612810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 25;257(5078):1900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1411505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 1986 Mar 3;56(9):930-933</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10033323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1980 Sep;31(3):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7260296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Nov 4;266(5186):771-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7973628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 25;257(5078):1944-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1411511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Apr 13;272(5654):608-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">148008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):836-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jan 15;239(4837):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17769992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Oct 2;257(5525):400-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">241021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1990 Oct-Dec;105(1-3):54-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2100150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1991 Dec;55(4):684-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1723487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1993;34:147-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8452092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Apr;175(7):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8458836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Sep 20;253(5026):1405-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1910206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jan 7;397(6714):50-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Aug 13;24(17):4608-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4063343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Aug;175(16):5135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Apr 7;268(5207):92-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7701347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1994 May;40(5):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8069785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultramicroscopy. 1992 Jul;42-44 ( Pt B):1236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1997;38:1-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8922117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1976 Feb 19;259(5544):601-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1250410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1972 Jul 19;273(2):346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5080323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Province du Brabant wallon</li>
<li>Région wallonne</li>
</region>
<settlement>
<li>Louvain-la-Neuve</li>
</settlement>
<orgName>
<li>Université catholique de Louvain</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Asther, M" sort="Asther, M" uniqKey="Asther M" first="M" last="Asther">M. Asther</name>
<name sortKey="Boonaert, C J" sort="Boonaert, C J" uniqKey="Boonaert C" first="C J" last="Boonaert">C J Boonaert</name>
<name sortKey="Gerin, P A" sort="Gerin, P A" uniqKey="Gerin P" first="P A" last="Gerin">P A Gerin</name>
<name sortKey="Rouxhet, P G" sort="Rouxhet, P G" uniqKey="Rouxhet P" first="P G" last="Rouxhet">P G Rouxhet</name>
</noCountry>
<country name="Belgique">
<region name="Région wallonne">
<name sortKey="Dufrene, Y F" sort="Dufrene, Y F" uniqKey="Dufrene Y" first="Y F" last="Dufrêne">Y F Dufrêne</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10464206
   |texte=   Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10464206" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020